

To facilitate efficiency of emergency operations through integrating knowledge and information for decision makers

Hongey Chen

Director

National Science and Technology Center for Disaster Reduction (NCDR)

The Second Global Summit of Research Institutes for Disaster Risk Reduction March 19-20th, 2015, Kyoto University

- Brief introduction of NCDR's operation model
 - A case of applying S&T for disaster risk reduction and management
- Challenges found at local governments during emergency operation
 - Experiences learned from Typhoon Morakot since 2009
- Ways to knowledge and information for decision makers
 - 1. Application 1: Flood Warning
 - 2. Application 2: Warning on debris flow
 - 3. Application 3: Early evacuation Typhoon Kong-Rey in 2013
 - 4. Application 4: Automation on monitoring risk highways
 - 5. Application 5: Information Integration and Risk Analysis
 - 6. Application 6: Massive Gas Explosions in Kaohsiung, Aug 1st, 2014
 - 7. Application 7: Information to the general public
- Conclusions and future challenges

Basic Information of Taiwan

Disaster of Typhoon and Earthquake

Typhoon (Morakot, 2009)

Urban flood

Debris flow

Landslide

Earthquake (Chi-Chi,1999) Residential Building

Infrastructure

Collapsed school

How NCDR applies science and technology for disaster risk reduction and management

ADRC, NIED, DPRI (JP)

PDC (US)

ADPC (TH)

NDMI (KR)

APEC EPWG

- •Information integration
- •Emergency operation (not search and rescue)
- Identification of urgent needs and long-term demandsIntegration of potential risk maps

NCDR has comprehensive teamwork with public and private sector – from top decision makers to local communities

Outlines

- Brief introduction of NCDR's operation model
 - A case of applying S&T for disaster risk reduction and management
- Challenges found at local governments during emergency operation
 - Experiences learned from Typhoon Morakot since 2009
- Ways to knowledge and information for decision makers
 - **1. Application 1: Flood Warning**
 - 2. Application 2: Warning on debris flow
 - 3. Application 3: Early evacuation Typhoon Kong-Rey in 2013
 - 4. Application 4: Automation on monitoring risk highways
 - 5. Application 5: Information Integration and Risk Analysis
 - 6. Application 6: Massive Gas Explosions in Kaohsiung, Aug 1st, 2014
 - 7. Application 7:Information to the general public
- Conclusions and future challenges

Challenges found at local governments during emergency operation – observations from Typhoon Marokot since 2009

Too much or too little information during emergency response

- Channel to acquire useful information
- System of systems to integrate information

what where

how when why ?

who

Lack of common operating picture to coordinate actions

- Potential risk maps for planning
- Situation maps for operation

When and how to make timely decisions

- No well-defined plans in advance
- No experienced staff to make suggestions

Elements to succeed decision support – "Cross-cutting Synergy" and "Information sharing"

Information flows and synergy for typhoon emergency operation

Value-added applications of weather information - service-oriented information

Early Warning System

The early warning Process for the disasters assessment

Three principles to integrate information for typhoon emergency operation by assistance of S&T

Outlines

- Brief introduction of NCDR's operation model
 - A case of applying S&T for disaster risk reduction and management
- Challenges found at local governments during emergency operation
 - **Experiences learned from Typhoon Morakot since 2009**
- Ways to knowledge and information for decision makers
 - 1. Application 1: Flood Warning
 - 2. Application 2: Warning on debris flow
 - 3. Application 3: Early evacuation Typhoon Kong-Rey in 2013
 - 4. Application 4: Automation on monitoring risk highways
 - 5. Application 5: Information Integration and Risk Analysis
 - 6. Application 6: Massive Gas Explosions in Kaohsiung, Aug 1st, 2014
 - 7. Application 7:Information to the general public
- Conclusions and future challenges

Application 1: Water Resources Agency – Flood Warning

Application 2: Soil and Water Conservation Bureau –Warning on debris flow

Disclosed info: time, locations and scientific scenario 16

Application 3: Evidence-based emergency operation – Early evacuation Typhoon Kong-Rey in 2013

Evidence-based emergency operation – Early evacuation Typhoon Kong-Rey in 2013

Case of successful early evacuation during Typhoon Fanapi, in Lai-Yi village, Sep. 2010

Progressive Improvements for Typhoons in Taiwan

Typhoon	Max.Intensity (mm/hr)	Accumulated Rainfall (mm)	Evacuation (Person)	Ceas	ed or Missing (Person)	NCDR Joined EOC
2001.07.28 Toraji	147	757		214		
2001.09.17 Nari	142	1,462	24,000	104		
2004.06.30 Mindulle	167	2,005	9,500	41		
2005.07.18 Haitang	177	2,124	1,208	15		
2005.09.01 Talim	119	766	1207	6		
2005.10.02 LongWang	154	776	945	2		
2006.07.12 Bilis	95	1,013	409	3		
2007.08.16 Sepat	122	1,399	2,531	1		
2008.07.16 Kalmaegi	161	1,027	179	26	Compound Disaster	
2008.07.28 Fung-Wong	121	830	1,303	2		
2008.09.10 Sinlaku	97	1,608	1,987	22	Compound Disaster	
2008.09.27 Jangmi	85	1,137	3,361	4	Compound Disaster	
2009.08.07 Morakot	100	2,965	24,775	695	Extreme weather	
2010.09.19 Fanapi	125	1,128	16,568	2		
2010.10.21 Megi	183	1,195	3,453	38	Compound Disaster	10

Application 4: Directorate General of Highways – Automation on monitoring risk highways

Application 5: NCDR - Information Integration and Risk Analysis

Flood

Disaster impact and suggestion

Disaster preparedness focus

Application 6: Massive Gas Explosions in Kaohsiung, Aug 1st, 2014

Direct Impact and Loss

- Affected area: 2~3 km²
- Destroyed street: 14 km
- 32 dead, 321 injured

Causes

Propane leaking from a rusty petrochemical pipe to the sewer system and explode

AP Photo

To identify suspensions of public services, emergency water supply station and affected area

Pipelines under the area including natural gas and petrochemical material

Required data for geo-spatial construction

- Street maps
- Pipeline system: petrochemical material, tap water, natural gas, power, telecommunications and drainage
- Locations explosion with time factors
- Aerial images of Prior-and postexplosion
- Locations of shelters
- Affected areas
- Time frame of recovery work
- Data sources: central and local governments, industrial sector and crowd sourcing

Thought functions of CCTV to monitor the affected site

Application of CCTV

- Original purposes
 - Observations of flash flood, road closure, water levels, reservoir operations, landslide and etc.
- For monitoring gas explosion
 - Traffic volume, traffic control, progress of recovery and etc.
- Locations of explosion with time factors
 - Central and local governments, industrial sector and crowd sourcing
- Next phase
 - To include all IP CCTV in urban areas

Application 7: Information to the general public – collaboration with Google's services

- Industry, government, academia and personal APP developer, all apply for interfacing alert data
- Google services starts in 2013/07/10, using our platform's service
- In 2014, 15 million of users ever visited to check during two typhoons

Google Crisis Map

26

Google Alerts

Make "Big data" "open and actionable"

- In order to apply "Big data" for better emergency preparedness, the major challenges to overcome
 - 1. Volume: overwhelming amount of data sets, how to identify relationship for integration
 - 2. Velocity: during urgent moments, pop-up situations and information could hamper decision making
 - 3. Varity: different and diverse data sets are required to delivered information or maps by request
 - 4. Verification: duplications or rumors from difference sources need rules and synergy to focus real issues

Thanks for your listening